Vertex-Colored Encompassing Graphs

نویسندگان

  • Michael Hoffmann
  • Csaba D. Tóth
چکیده

It is shown that every disconnected vertex-colored plane straight line graph with no isolated vertices can be augmented (by adding edges) into a connected plane straight line graph such that the new edges respect the coloring and the degree of every vertex increases by at most two. The upper bound for the increase of vertex degrees is best possible: there are input graphs that require the addition of two new edges incident to a vertex. The exclusion of isolated vertices is necessary: there are input graphs with isolated vertices that cannot be augmented to a connected vertex-colored plane straight line graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the zero forcing number of some Cayley graphs

‎Let Γa be a graph whose each vertex is colored either white or black‎. ‎If u is a black vertex of Γ such that exactly one neighbor‎ ‎v of u is white‎, ‎then u changes the color of v to black‎. ‎A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that‎ if initially the vertices in Z are colored black and the remaining vertices are colored white‎, ‎then Z changes the col...

متن کامل

Swapping Colored Tokens on Graphs

We investigate the computational complexity of the following problem. We are given a graph in which each vertex has an initial and a target color. Each pair of adjacent vertices can swap their current colors. Our goal is to perform the minimum number of swaps so that the current and target colors agree at each vertex. When the colors are chosen from {1, 2, . . . , c}, we call this problem c-Col...

متن کامل

Complexity of Rainbow Vertex Connectivity Problems for Restricted Graph Classes

A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the comp...

متن کامل

Rainbow connections for planar graphs and line graphs

An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has rc(G) =...

متن کامل

Oriented, 2-edge-colored, and 2-vertex-colored homomorphisms

We show that the 2-edge-colored chromatic number of a class of simple graphs is bounded if and only if the acyclic chromatic number is bounded for this class. Recently, the CSP dichotomy conjecture has been reduced to the case of 2-edge-colored homomorphism and to the case of 2-vertex-colored homomorphism. Both reductions are rather long and follow the reduction to the case of oriented homomorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014